Главная Работы на конкурс Предметное образование Физико-математические дисциплины Исследовательская работа «От клетки к площади: формула Пика»

Исследовательская работа «От клетки к площади: формула Пика»

Автор: Щёголев Владислав Ярославович

Место работы/учебы (аффилиация): МКОУ "Толвуйская СОШ", Республика Карелия, 8 класс

Научный руководитель: Ефремов Сергей Николаевич

Что такое математика? Это, конечно же, расчеты. Воплощение математических расчётов можно увидеть почти везде: в велосипеде, в автомобиле, в построенном здании, в телефоне. Всё это работает благодаря тому, что все данные объектов и их работы рассчитаны заранее по различным формулам.  Кто-то над этим даже не задумывается, а кто-то увлеченно начинает вникать в расчёты на уроках математики. Часто это увлечение возникает при решении задач. Так, при изучении темы «Площади многоугольников» у меня возник вопрос: «Существуют ли задачи, которые отличаются от данных в учебнике?» Мой учитель рассказал, что такие задачи есть. Это задачи на клетчатой бумаге.

Клетчатая бумага привычна нашему глазу: мы пишем на уроках математики именно в таких тетрадях. Кто-то на ней рисует, кто-то чертит. А ведь именно клетчатая бумага является примером точечной решетки на плоскости. Задачи на клеточной бумаге разнообразны: можно вычислить площадь многоугольника, решить задачи на дроби и проценты.

Для многих задач на бумаге в клетку нет общего правила решения, что позволяет не просто выучить и зазубрить материал, а развивать умение думать, анализировать и размышлять. При изучении задач на клетке я выяснил, что существует теорема Пика. В школьной программе не изучается, но которая поможет мне быстрее справиться с заданием.

Объект исследования: формула Пика.

Предмет исследования: методы и приёмы решения задач на вычисление площади многоугольника на клетчатой бумаге.

Гипотеза: площадь фигуры, вычисленная по формуле Пика, равна площади фигуры, вычисленной по формулам площадей.

Цель: выяснение существования другой, отличной от школьной программы, формулы нахождения площади многоугольника.

Задачи:

  1. Найти различные методы и приёмы решения задач на клетчатой бумаге.
  2. Проанализировать и систематизировать полученную информацию.

Ожидаемый результат: научиться использовать формулу Пика, которую можно применить в следующем учебном году на ОГЭ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Смотреть похожие работы

Презентация «Лента Мебиуса: модель односторонней поверхности»

Лист Мёбиуса — символ математики, Что служит высшей мудрости венцом… Он полон неосознанной романтики: В нём бесконечность свернута кольцом. В нём — простота, и вместе с нею — сложность, Что недоступна даже мудрецам: Здесь на глазах преобразилась плос…

Исследовательская работа «Фракталы — геометрия красоты»

Многие природные системы настолько сложны, что использование только знакомых объектов обычной геометрии для их моделирования представляется безнадежным. Такие задачи как построить модель горного хребта или кроны дерева, модель системы кровообращения,…

Эссе «Замечательные точки треугольника: где математика встречается с реальной жизнью»

Доступна к просмотру полнотекстовая версия работы

Вы когда-нибудь задумывались, как математика используется в реальной жизни? Нет, не просто решая уравнения на уроке, а по-настоящему, чтобы строить дома, планировать города или создавать спортивные арены. Оказывается, даже обычные треугольники могут…

Проект «Геометрия в народных костюмах ханты и манси»

Геометрия – раздел математики, изучающий пространственные отношения и формы. Это наука, которая тесно связана с окружающим нас миром. Круглые, квадратные, прямоугольные, треугольные и другие объекты – всё, что нас окружает, состоит из геометрических…

Исследовательская работа «Симметрия в архитектурных сооружениях»

Доступна к просмотру полнотекстовая версия работы

Актуальность: понятие симметрия проходит через всю историю человеческого искусства. Симметрия встречается абсолютно везде, её принципы играют важную роль в физике, математике, технике, музыке и поэзии, живописи и архитектуре а также широко используют…

Научно-исследовательская работа «Блез Паскаль и его удивительный треугольник»

Доступна к просмотру полнотекстовая версия работы

Актуальность: навыки решения задач с применением треугольника Паскаля помогут в рамках изучения школьного курса математики, при решении олимпиадных задач, в профессиональной деятельности. Цели: изучение  биографии Блеза Паскаля; изучение роли понятия…

Мероприятие завершено

Конкурс, в котором работа участвует

Направление

Форма представления работы

Ключевые слова

Дата публикации работы

17.04.2023