Главная Работы на конкурс Предметное образование Физико-математические дисциплины
Исследовательский проект «Математические игры прошлых столетий»
Автор: Балухтин Тимур Владимирович, Емельянов Константин Сергеевич
Место работы/учебы (аффилиация): ГБОУ "Брянский городской лицей №1 имени А.С.Пушкина", Брянская область, 10 класс
Научный руководитель: Любовь Ивановна Ефремова
Актуальность. В настоящее время многие дети и взрослые играют в разные компьютерные игры, которых очень много. Некоторые из них пропагандируют жестокость и насилие, что плохо влияет на психику и здоровье человека. Поэтому тема исследования «Математические игры прошлых столетий» появилась не случайно. Нас заинтересовал вопрос о том, в какие игры играли наши предки, например, люди, жившие два века тому назад, когда не было компьютеров, мобильных телефонов, радио, телевидения и т.д. Поэтому мы решили заняться этим вопросом вплотную, ведь сам играющий, приступая к играм, иногда не преследует определенной цели, но многие игры, в конце концов, преследуют некоторую цель.
«Математической» игрой называют такую игру, которая в своём процессе требует умственной деятельности и применения методов и умозаключений, употребляемых в математике. Математический характер игры будет тем полнее, чем больше преобладают в ней математические рассуждения и правила.
Сущность математической игры легче всего выясняется на примере. Возьмём игру «ним». Эта простая игра имеет сравнительно простую теорию, которую можно изложить, не пользуясь математическими символами, хотя теория эта носит чисто математический характер. Эта же теория показывает, что существует способ, наверняка ведущий к выигрышу; причём начинающую игру первым же ходом может обеспечить за собой победу. Знание одним игроком этой теории даёт ему такое превосходство перед своим, хотя бы опытным противником, какое имеет европейское войско, вооружённое по последнему слову техники, по сравнению с толпой дикарей, вооружённой луками и стрелами. Если оба игрока знают математическую теорию игры и безошибочно играют, то исход игры зависит, лишь от начального положения, и тем самым она приобретает уже характер игры на «счастье»…. [1, 6-7] В качестве игры, «ним» может прельщать нас лишь до тех пор, пока мы не знаем её математической теории; но интерес, который она вызывает, заключается именно в её остроумной математической теории. Следует заметить, что с математической точки зрения наибольший интерес представляют задачи сравнительно несложные. Для сложных игр, среди которых, по своему образовательному значению, первое место занимает шахматная игра, трудно, да едва ли и возможно, найти исчерпывающую теорию, охватывающую все частные случаи.
Цель исследования: изучить и сконструировать наиболее популярные математические игры прошлых столетий.
Объект исследования: игры. Предмет исследования: математические игры прошлых столетий.
Гипотеза: знание выигрышных стратегий математических игр всегда приведет к победе или ничьей; математические игры способствуют развитию памяти, логического мышления, выбору верного решения в играх и жизненных ситуациях.
Задачи исследования:
- изучить литературу по теме исследования;
- изучить правила математических игр: прыганье взапуски, «15»,солитер, башня Люка;
- научиться играть в эти математические игры;
- изготовить модели наиболее популярных математических игр прошлых столетий: игру в пятнадцать, солитер и башню Люка;
- провести социологический опрос среди одноклассников на предмет информированности обучающихся о математических играх прошлых столетий;
- провести практическое занятие в младших классах.
Методы исследования: сравнение, анализ и синтез (при изучении литературы по данной проблеме); анкетирование и опрос (при изучении актуальности проблемы); поиск, наблюдение, дедукция (чтобы из большого числа игр выбрать те, которые нам больше подойдут), математический (для правильного воспроизведения наиболее популярных «классических» игр прошлых столетий), аналитическое обобщение (где на основе различных мнений, мы делаем собственные выводы) .
Результаты и выводы:
- Подводя итоги исследования, следует отметить, что лучшие игры – это те, которые не только развлекают, но и тренируют мозг. Они могут объединять участников как одного возраста, так и разных, а потому подходят и для времяпрепровождения большой компании, и для семейного досуга. К тому же они позволяют прочувствовать радость соперничества и победы, не зря они известны с давних времен. Такое времяпровождение – мощная тренировка сразу для нескольких способностей человека: логических, аналитических и дедуктивных, образного мышления, концентрации. Доказанный факт, что люди, с детства занимающиеся шахматами либо похожими играми, в зрелом возрасте гораздо сообразительнее своих сверстников.
- В результате исследования мы познакомились с четырьмя играми прошлых столетий: прыганье взапуски, игра в пятнадцать (19 век), солитер (18 век) и башня Люка (19 век). Изготовили модели трех последних игр. Это было очень интересно и одновременно трудно, так как эти игры отличаются от тех, которые есть в каждом телефоне. Коснулись кратко истории игры и ее описания. Рассмотрели теории игр, в том числе математические и сделали много фото для наглядности, чтобы любому читателю была понятна суть игры.
- Еще наши игры мы апробировали на семиклассниках внеурочное время. Все обучающиеся без исключения, проявили к этой теме огромный интерес. Мы не только излагали теорию вопроса с помощью презентации, но и разрешали ребятам поиграть в эти игры. Они даже не хотели уходить домой, не слышали звонка, игра затягивала, и некоторые ребята спрашивали разрешения поиграть в другой раз.
- Гипотеза мы считаем, что подтвердилась, потому что, если твой соперник не знает тонкостей игры, то проиграет. Например, в игре «Башня Люка» нужно знать, куда надо переносить меньшую пластинку в начале игры при нечетном (четном) числе пластинок на конечную палочку или на вспомогательную. Таким образом, необходимо развивать познавательный интерес к математическим «классическим» играм с целью живого общения друг с другом. Поэтому мы предлагаем использовать математические игры как развивающий досуг для молодежи.
Смотреть похожие работы
Презентация «Лента Мебиуса: модель односторонней поверхности»
Исследовательская работа «Фракталы — геометрия красоты»
Проект «Статистическое исследование общественного мнения»
Доступна к просмотру полнотекстовая версия работы
Эссе «Замечательные точки треугольника: где математика встречается с реальной жизнью»
Доступна к просмотру полнотекстовая версия работы
Исследовательская работа «Решение некоторых заданий ОГЭ типа №20 и №21 по математике»
Доклад о проведенных исследованиях и экспериментах «Фрактальная геометрия в природе»
Доступна к просмотру полнотекстовая версия работы
Добавить комментарий